国产自操久久,9999在线观看,日韩中文字幕,中文字幕精品视频在线,5151精品国产人成在线观看,狠狠色综合久久婷婷色天使 ,国产精品一区二区男人吃奶

    <meter id="6156u"><td id="6156u"></td></meter>

    <pre id="6156u"><tr id="6156u"></tr></pre>

      1. 函數(shù)知識點總結

        時間:2024-08-25 08:21:42 知識點總結 我要投稿

        函數(shù)知識點總結【經典15篇】

          總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它能使我們及時找出錯誤并改正,因此十分有必須要寫一份總結哦。我們該怎么寫總結呢?以下是小編精心整理的函數(shù)知識點總結,希望對大家有所幫助。

        函數(shù)知識點總結【經典15篇】

        函數(shù)知識點總結1

          誘導公式的本質

          所謂三角函數(shù)誘導公式,就是將角n(/2)的三角函數(shù)轉化為角的三角函數(shù)。

          常用的誘導公式

          公式一: 設為任意角,終邊相同的角的同一三角函數(shù)的值相等:

          sin(2k)=sin kz

          cos(2k)=cos kz

          tan(2k)=tan kz

          cot(2k)=cot kz

          公式二: 設為任意角,的三角函數(shù)值與的三角函數(shù)值之間的.關系:

          sin()=-sin

          cos()=-cos

          tan()=tan

          cot()=cot

          公式三: 任意角與 -的三角函數(shù)值之間的關系:

          sin(-)=-sin

          cos(-)=cos

          tan(-)=-tan

          cot(-)=-cot

          公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關系:

          sin()=sin

          cos()=-cos

          tan()=-tan

          cot()=-cot

        函數(shù)知識點總結2

          當h>0時,y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動h個單位得到,

          當h<0時,則向左平行移動|h|個單位得到.

          當h>0,k>0時,將拋物線y=a_^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

          當h>0,k<0時,將拋物線y=a_^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

          當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

          當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

          因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=a_^2+b_+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線_=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

          3.拋物線y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時,y隨_的`增大而減小;當_≥-b/2a時,y隨_的增大而增大.若a<0,當_≤-b/2a時,y隨_的增大而增大;當_≥-b/2a時,y隨_的增大而減小.

          4.拋物線y=a_^2+b_+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c);

          (2)當△=b^2-4ac>0,圖象與_軸交于兩點A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

          (a≠0)的兩根.這兩點間的距離AB=|_?-_?|

          當△=0.圖象與_軸只有一個交點;

          當△<0.圖象與_軸沒有交點.當a>0時,圖象落在_軸的上方,_為任何實數(shù)時,都有y>0;當a<0時,圖象落在_軸的下方,_為任何實數(shù)時,都有y<0.

          5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當題給條件為已知圖象經過三個已知點或已知_、y的三對對應值時,可設解析式為一般形式:

          y=a_^2+b_+c(a≠0).

          (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(_-h)^2+k(a≠0).

          (3)當題給條件為已知圖象與_軸的兩個交點坐標時,可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

          7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

        函數(shù)知識點總結3

          教學目標:

          (1)能夠根據實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

          (2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣

          教學重點:能夠根據實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

          教學難點:求出函數(shù)的自變量的取值范圍。

          教學過程:

          一、問題引新

          1.設矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進而得出矩形的`面積ym2.試將計算結果填寫在下表的空格中,

          AB長_(m) 1 2 3 4 5 6 7 8 9

          BC長(m) 12

          面積y(m2) 48

          2._的值是否可以任意取?有限定范圍嗎?

          3.我們發(fā)現(xiàn),當AB的長(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫出這個函數(shù)的關系式,教師可提出問題,(1)當AB=_m時,BC長等于多少m?(2)面積y等于多少? y=_(20-2_)

          二、提出問題,解決問題

          1、引導學生看書第二頁問題一、二

          2、觀察概括

          y=6_2 d= n /2 (n-3) y= 20 (1-_)2

          以上函數(shù)關系式有什么共同特點? (都是含有二次項)

          3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

          4、課堂練習

          (1) (口答)下列函數(shù)中,哪些是二次函數(shù)?

          (1)y=5_+1 (2)y=4_2-1

          (3)y=2_3-3_2 (4)y=5_4-3_+1

          (2).P3練習第1,2題。

          五、小結敘述二次函數(shù)的定義.

          第二課時:26.1二次函數(shù)(2)

          教學目標:

          1、使學生會用描點法畫出y=a_2的圖象,理解拋物線的有關概念。

          2、使學生經歷、探索二次函數(shù)y=a_2圖象性質的過程,培養(yǎng)學生觀察、思考、歸納的良好思維習慣。

          教學重點:使學生理解拋物線的有關概念,會用描點法畫出二次函數(shù)y=a_2的圖象

          教學難點:用描點法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質。

        函數(shù)知識點總結4

          余割函數(shù)

          對于任意一個實數(shù)x,都對應著唯一的.角(弧度制中等于這個實數(shù)),而這個角又對應著唯一確定的余割值cscx與它對應,按照這個對應法則建立的函數(shù)稱為余割函數(shù)。

          記作f(x)=cscx

          f(x)=cscx=1/sinx

          1、定義域:{x|x≠kπ,k∈Z}

          2、值域:{y|y≤-1或y≥1}

          3、奇偶性:奇函數(shù)

          4、周期性:最小正周期為2π

          5、圖像:

          圖像漸近線為:x=kπ ,k∈Z

          其實有一點需要注意,就是余割函數(shù)與正弦函數(shù)互為倒數(shù)。

        函數(shù)知識點總結5

          一次函數(shù)的定義

          一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當b=0時,一次函數(shù)y=kx,又叫做正比例函數(shù)。

          1、一次函數(shù)的解析式的形式是y=kx+b,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。

          2、當b=0,k≠0時,y=kx仍是一次函數(shù)。

          3、當k=0,b≠0時,它不是一次函數(shù)。

          4、正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。

          一次函數(shù)的圖像及性質

          1、在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。

          2、一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)。

          3、正比例函數(shù)的圖像總是過原點。

          4、k,b與函數(shù)圖像所在象限的關系:

          當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

          當k>0,b>0時,直線通過一、二、三象限;

          當k>0,b<0時,直線通過一、三、四象限;

          當k<0,b>0時,直線通過一、二、四象限;

          當k<0,b<0時,直線通過二、三、四象限;

          當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

          這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

          一次函數(shù)的圖象與性質的口訣

          一次函數(shù)是直線,圖象經過三象限;

          正比例函數(shù)更簡單,經過原點一直線;

          兩個系數(shù)k與b,作用之大莫小看,

          k是斜率定夾角,b與y軸來相見,

          k為正來右上斜,x增減y增減;

          k為負來左下展,變化規(guī)律正相反;

          k的絕對值越大,線離橫軸就越遠。

          拓展閱讀:一次函數(shù)的解題方法

          理解一次函數(shù)和其它知識的聯(lián)系

          一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

          掌握一次函數(shù)的解析式的特征

          一次函數(shù)解析式的結構特征:kx+b是關于x的一次二項式,其中常數(shù)b可以是任意實數(shù),一次項系數(shù)k必須是非零數(shù),k≠0,因為當k = 0時,y = b(b是常數(shù)),由于沒有一次項,這樣的函數(shù)不是一次函數(shù);而當b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

          應用一次函數(shù)解決實際問題

          1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯(lián)的量,且其中一種量因另一種量的變化而變化;

          2、找出具有相關聯(lián)的兩種量的等量關系之后,明確哪種量是另一種量的函數(shù);

          3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的'正比例函數(shù);

          4、求一次函數(shù)與正比例函數(shù)的關系式,一般采取待定系數(shù)法。

          數(shù)形結合

          方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數(shù)。

          如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對應點平移。k反正不變然后用待定系數(shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

        函數(shù)知識點總結6

          奇函數(shù)和偶函數(shù)的定義

          奇函數(shù):如果函數(shù)f(x)的.定義域中任意x有f(—x)=—f(x),則函數(shù)f(x)稱為奇函數(shù)。

          偶數(shù)函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=f(x),則函數(shù)f(x)稱為偶數(shù)函數(shù)。

          性質

          奇函數(shù)性質:

          1、圖象關于原點對稱

          2、滿足f(—x)= — f(x)

          3、關于原點對稱的區(qū)間上單調性一致

          4、如果奇函數(shù)在x=0上有定義,那么有f(0)=0

          5、定義域關于原點對稱(奇偶函數(shù)共有的)

          偶函數(shù)性質:

          1、圖象關于y軸對稱

          2、滿足f(—x)= f(x)

          3、關于原點對稱的區(qū)間上單調性相反

          4、如果一個函數(shù)既是奇函數(shù)有是偶函數(shù),那么有f(x)=0

          5、定義域關于原點對稱(奇偶函數(shù)共有的)

          常用運算方法

          奇函數(shù)±奇函數(shù)=奇函數(shù)

          偶函數(shù)±偶函數(shù)=偶函數(shù)

          奇函數(shù)×奇函數(shù)=偶函數(shù)

          偶函數(shù)×偶函數(shù)=偶函數(shù)

          奇函數(shù)×偶函數(shù)=奇函數(shù)

          證明方法

          設f(x),g(x)為奇函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數(shù)加奇函數(shù)還是奇函數(shù);

          若f(x),g(x)為偶函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數(shù)加偶函數(shù)還是偶函數(shù)。

        函數(shù)知識點總結7

          1.①與(0°≤<360°)終邊相同的角的集合(角與角的終邊重合):|k360,kZ

         、诮K邊在x軸上的角的集合:|k180,kZ③終邊在y軸上的角的集合:|k18090,kZ

         、芙K邊在坐標軸上的角的集合:|k90,kZ

          ⑤終邊在y=x軸上的角的集合:|k18045,kZ⑥終邊在yx軸上的角的集合:|k18045,kZ

         、呷艚桥c角的終邊關于x軸對稱,則角與角的關系:360k

         、嗳艚桥c角的終邊關于y軸對稱,則角與角的關系:360k180

         、崛艚桥c角的終邊在一條直線上,則角與角的關系:180k

          ⑩角與角的終邊互相垂直,則角與角的關系:360k902.角度與弧度的互換關系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧長公式:l||r.扇形面積公式:s12扇形2lr12||r

          2、三角函數(shù)在各象限的符號:(一全二正弦,三切四余弦)

          yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

          3.三角函數(shù)的定義域:

          三角函數(shù)定義域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

          f(x)cotxx|xR且xk,kZ

          4、同角三角函數(shù)的基本關系式:

          sincostan

          cossincot

          tancot1sin2cos217、誘導公式:

          把k2“奇變偶不變,符號看象限”的三角函數(shù)化為的三角函數(shù),概括為:三角函數(shù)的公式:

         。ㄒ唬┗娟P系

          公式組一sinxcscx=1tanx=sinx22

          cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

          公式組二公式組三

          sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

          公式組四公式組五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

          cot(2x)cotx(二)角與角之間的互換

          cos()coscossinsincos()coscossinsin

          公式組六

          sin(x)sinxcos(x)cosxtan(x)tanx

          cot(x)cotxsin22sincos-2-

          cos2cos2sin2cos112sin

          2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

          tantan1tantan

          tan()

          5.正弦、余弦、正切、余切函數(shù)的圖象的性質:

          ysinxycosxytanxycotxyAsinx(A、>0)定義域RR值域周期性奇偶性單調性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函數(shù)A,A22奇函數(shù)2當當0,非奇非偶奇函數(shù)偶函數(shù)奇函數(shù)0,上為上為上為增函上為增函數(shù);上為增增函數(shù);增函數(shù);數(shù);上為減函數(shù)函數(shù);上為減函數(shù)上為減上為減上為減函數(shù)函數(shù)函數(shù)注意:①ysinx與ysinx的單調性正好相反;ycosx與ycosx的單調性也同樣相反.一般地,若yf(x)在[a,b]上遞增(減),則yf(x)在[a,b]上遞減(增).②ysinx與的ycosx周期是.

          ▲y

          Ox

          0)的周期T③ysin(x)或yx2cos(x)(2.

          ytan的周期為2(TT2,如圖,翻折無效).

          ④ysin(x)的對稱軸方程是xk2(

          kZ),對稱中心(

          12k,0);

          ycos(x)的對稱軸方程是xk(

          kZ),對稱中心(k,0);

          yatn(

          x)的對稱中心(

          k2,0).

          三角函數(shù)圖像

          數(shù)y=Asin(ωx+φ)的振幅|A|,周期T2||,頻率f1T||2,相位x;初

          相(即當x=0時的相位).(當A>0,ω>0時以上公式可去絕對值符號),

          由y=sinx的圖象上的點的.橫坐標保持不變,縱坐標伸長(當|A|>1)或縮短(當0<|A|<1)到原來的|A|倍,得到y(tǒng)=Asinx的圖象,叫做振幅變換或叫沿y軸的伸縮變換.(用y/A替換y)

          由y=sinx的圖象上的點的縱坐標保持不變,橫坐標伸長(0<|ω|<1)或縮短(|ω|>1)到原來的|1|倍,得到y(tǒng)=sinωx的圖象,叫做周期變換或叫做沿x軸的伸縮變換.(用

          ωx替換x)

          由y=sinx的圖象上所有的點向左(當φ>0)或向右(當φ<0)平行移動|φ|個單位,得到y(tǒng)=sin(x+φ)的圖象,叫做相位變換或叫做沿x軸方向的平移.(用x+φ替換x)

          由y=sinx的圖象上所有的點向上(當b>0)或向下(當b<0)平行移動|b|個單位,得到y(tǒng)=sinx+b的圖象叫做沿y軸方向的平移.(用y+(-b)替換y)

          由y=sinx的圖象利用圖象變換作函數(shù)y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的圖象,要特別注意:當周期變換和相位變換的先后順序不同時,原圖象延x軸量伸縮量的區(qū)別。

        函數(shù)知識點總結8

          特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

          當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax+bx+c=0。

          此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。

          1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當h>0時,y=a(x-h)的圖象可由拋物線y=ax向右平行移動h個單位得到。

          當h<0時,則向xxx移動|h|個單位得到。

          當h>0,k>0時,將拋物線y=ax向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

          當h>0,k<0時,將拋物線y=ax向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。

          當h<0,k>0時,將拋物線向xxx移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)+k的圖象。

          當h<0,k<0時,將拋物線向xxx移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。

          因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

          2.拋物線y=ax+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b]/4a)。

          3.拋物線y=ax+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。

          4.拋物線y=ax+bx+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c)。

          (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點間的距離AB=|x-x|。

          當△=0.圖象與x軸只有一個交點;當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0。

          5.拋物線y=ax+bx+c的'最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b)/4a。

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:y=ax+bx+c(a≠0)。

          (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)+k(a≠0)。

          (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

        函數(shù)知識點總結9

          I.定義與定義表達式

          一般地,自變量_和因變量y之間存在如下關系:y=a_^2+b_+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數(shù)。

          二次函數(shù)表達式的右邊通常為二次三項式。

          II.二次函數(shù)的三種表達式

          一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(_-h)^2+k[拋物線的頂點P(h,k)]

          交點式:y=a(_-_?)(_-_?)[僅限于與_軸有交點A(_?,0)和B(_?,0)的拋物線]

          注:在3種形式的互相轉化中,有如下關系:

          h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標系中作出二次函數(shù)y=_^2的圖像,可以看出,二次函數(shù)的.圖像是一條拋物線。

          IV.拋物線的性質

          1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。

          對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)

          2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。

          3.二次項系數(shù)a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

          4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

          當a與b同號時(即ab>0),對稱軸在y軸左;

          當a與b異號時(即ab<0),對稱軸在y軸右。

          5.常數(shù)項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6.拋物線與_軸交點個數(shù)

          Δ=b^2-4ac>0時,拋物線與_軸有2個交點。

          Δ=b^2-4ac=0時,拋物線與_軸有1個交點。

          Δ=b^2-4ac<0時,拋物線與_軸沒有交點。

          _的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

          V.二次函數(shù)與一元二次方程

          特別地,二次函數(shù)(以下稱函數(shù))y=a_^2+b_+c,

          當y=0時,二次函數(shù)為關于_的一元二次方程(以下稱方程),即a_^2+b_+c=0

          此時,函數(shù)圖像與_軸有無交點即方程有無實數(shù)根。函數(shù)與_軸交點的橫坐標即為方程的根。

        函數(shù)知識點總結10

          一、知識導學

          1.二次函數(shù)的概念、圖像和性質.(1)注意解題中靈活運用二次函數(shù)的一般式二次函數(shù)的頂點式二次函數(shù)的坐標式

          f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)

          (a0)

         。2)解二次函數(shù)的問題(如單調性、最值、值域、二次三項式的恒正恒負、二次方程根的范圍等)要充分利用好兩種方法:配方、圖像,很多二次函數(shù)都用數(shù)形結合的思想去解.

         、

          f(x)ax2bxc(a0),當b24ac0時圖像與x軸有兩個交點.

          M(x1,0)N(x2,0),|MN|=|x1-x2|=

          .|a|②二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數(shù)的頂點處取得.2.指數(shù)函數(shù)

         、賏myax(a0,a1)和對數(shù)函數(shù)ylogax(a0,a1)的概念和性質.

         。1)有理指數(shù)冪的意義、冪的運算法則:

          anamn;②(am)namn;③(ab)nanbn(這時m,n是有理數(shù))

          MlogaMlogaNNlogcb1MlogaM;logab

          nlogcaloga對數(shù)的概念及其運算性質、換底公式.

          loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指數(shù)函數(shù)的圖像、單調性與特殊點.對數(shù)函數(shù)的圖像、單調性與特殊點.

         、僦笖(shù)函數(shù)圖像永遠在x軸上方,當a>1時,圖像越接近y軸,底數(shù)a越大;當0錯解:∵18

          5,∴l(xiāng)og185b

          log1845log185log189ba∴l(xiāng)og3645log1836log184log189log184a5,∴l(xiāng)og185b

          log1845log185log189∴l(xiāng)og3645log1836log184log189bb錯因:因對性質不熟而導致題目沒解完.正解:∵18

          bababa

          182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的兩個根都大于1的充要條件.

          2錯解:由于方程f(x)axbxc0(a0)對應的二次函數(shù)為

          f(x)ax2bxc的圖像與x軸交點的橫坐標都大于1即可.

          f(1)0f(1)0故需滿足b,所以充要條件是b

          112a2a錯因:上述解法中,只考慮到二次函數(shù)與x軸交點坐標要大于1,卻忽視了最基本的的前題條件,應讓二次函數(shù)圖像與x軸有

          交點才行,即滿足△≥0,故上述解法得到的不是充要條件,而是必要不充分條件.

          f(1)0b正解:充要條件是12a2b4ac0y36x126x5的單調區(qū)間.

          x2xx錯解:令6t,則y361265=t12t5

          [例3]求函數(shù)

          ∴當t≥6,即x≥1時,y為關于t的增函數(shù),當t≤6,即x≤1時,y為關于t的減函數(shù)∴函數(shù)

          y36x126x5的單調遞減區(qū)間是(,6],單調遞增區(qū)間為[6,)

          x錯因:本題為復合函數(shù),該解法未考慮中間變量的取值范圍.正解:令6∴函數(shù)

          t,則t6x為增函數(shù),y36x126x5=t212t5=(t6)241

          ∴當t≥6,即x≥1時,y為關于t的增函數(shù),當t≤6,即x≤1時,y為關于t的減函數(shù)

          y36x126x5的單調遞減區(qū)間是(,1],單調遞增區(qū)間為[1,)

          [例4]已知yloga(2ax)在[0,1]上是x的減函數(shù),則a的取值范圍是錯解:∵yloga(2ax)是由ylogau,u2ax復合而成,又a>0∴u2ax在[0,1]上是x的減函數(shù),由復合函數(shù)關系知,ylogau應為增函數(shù),∴a>1

          錯因:錯因:解題中雖然考慮了對數(shù)函數(shù)與一次函數(shù)復合關系,卻忽視了數(shù)定義域的'限制,單調區(qū)間應是定義域的某個子區(qū)間,即函數(shù)應在[0,1]上有意義.

          yloga(2ax)是由ylogau,u2ax復合而成,又a>0∴u2ax在[0,1]上是x的減函數(shù),

          由復合函數(shù)關系知,ylogau應為增函數(shù),∴a>1

          又由于x在[0,1]上時yloga(2ax)有意義,u2ax又是減函數(shù),∴x=1時,u2ax取最小值是

          正解:∵

          umin2a>0即可,∴a<2,綜上可知所求的取值范圍是1<a<2[例5]已知函數(shù)f(x)loga(3ax).

         。1)當x[0,2]時f(x)恒有意義,求實數(shù)a的取值范圍.

         。2)是否存在這樣的實數(shù)a使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為

          存在,請說明理由.分析:函數(shù)

          1,如果存在,試求出a的值;如果不

          f(x)為復合函數(shù),且含參數(shù),要結合對數(shù)函數(shù)的性質具體分析找到正確的解題思路,是否存在性問題,分析時一

          0,a1

          般先假設存在后再證明.

          解:(1)由假設,3ax>0,對一切x[0,2]恒成立,a顯然,函數(shù)g(x)=3ax在[0,2]上為減函數(shù),從而g(2)=32a>0得到a<(2)假設存在這樣的實數(shù)a,由題設知∴a=

          32∴a的取值范圍是(0,1)∪(1,

          32)

          f(1)1,即f(1)loga(3a)=1

          32此時

          f(x)loga(33x)當x2時,f(x)沒有意義,故這樣的實數(shù)不存在.2,

          12x4xa[例6]已知函數(shù)f(x)=lg,其中a為常數(shù),若當x∈(-∞,1]時,f(x)有意義,求實數(shù)a的取值范圍.

          a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),當x∈(-∞,1]時,y=x與y=x都

          24424x2xa2a1333是減函數(shù),∴y=(11)在(-∞,1]上是增函數(shù),(11)max=-,∴a>-,故a的取值范圍是(-,+∞).

          4444x2x422

          2

          xx[例7]若(a1)解:∵冪函數(shù)

          13(32a)1313,試求a的取值范圍.

          yx有兩個單調區(qū)間,

          ∴根據a1和32a的正、負情況,有以下關系a10a1032a0.①32a0.②a132aa132a解三個不等式組:①得

          a10.③32a023,

          23<a<

          32,②無解,③a<-1,∴a的取值范圍是(-∞,-1)∪(

          32)

          [例8]已知a>0且a≠1,f(logax)=

          a1(x-

          xa21)

          (1)求f(x);(2)判斷f(x)的奇偶性與單調性;

          2

          (3)對于f(x),當x∈(-1,1)時,有f(1-m)+f(1-m)<0,求m的集合M.

          分析:先用換元法求出f(x)的表達式;再利用有關函數(shù)的性質判斷其奇偶性和單調性;然后利用以上結論解第三問.解:(1)令t=logax(t∈R),則xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)為奇函數(shù).當a1時,20,a1a1u(x)axax為增函數(shù),當0a1時,類似可判斷f(x)為增函數(shù).綜上,無論a1或0a1,f(x)在R上都是增函數(shù).

          (3)f(1m)f(1m2)0,f(x)是奇函數(shù)且在R上是增函數(shù),f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型習題導練1.函數(shù)

          f(x)axb的圖像如圖,其中a、b為常數(shù),則下列結論正確的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0

          x的值為()

          yC.1或4C.2

          2

          2、已知2lg(x-2y)=lgx+lgy,則A.13、方程loga(x1)xA.04、函數(shù)f(x)與g(x)=(

          2B.4B.1

          x

          D.4或8D.3

          ()

          2(0A.

          0,nB.,0C.

          0,2

          D.

          2,0

          5、圖中曲線是冪函數(shù)y=x在第一象限的圖像,已知n可取±2,±

          1四個值,則相應于曲線c1、c2、c3、c4的n依次為()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-

          2222226.求函數(shù)y=log2

          2(x-5x+6)的定義域、值域、單調區(qū)間.7.若x滿足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.

          8.已知定義在R上的函數(shù)f(x)2xa2x,a為常數(shù)(1)如果f(x)=f(x),求a的值;

         。2)當

          f(x)滿足(1)時,用單調性定義討論f(x)的單調性.

          基本初等函數(shù)綜合訓練B組

          一、選擇題

          1.若函數(shù)

          f(x)logax(0a1)在區(qū)間[a,2a]上的最大值是最小值的3倍,則a的值為()

          A.214B.22C.4D.12

          2.若函數(shù)yloga(xb)(a0,a1)的圖象過兩點(1,0)

          和(0,1),則()

          A.a2,b2B.a2,b2

          C.a2,b1D.a2,b23.已知f(x6)log2x,那么f(8)等于()

          A.43B.8C.18D.12

          4.函數(shù)ylgx()

          A.是偶函數(shù),在區(qū)間(,0)上單調遞增B.是偶函數(shù),在區(qū)間(,0)上單調遞減C.是奇函數(shù),在區(qū)間(0,)上單調遞增D.是奇函數(shù),在區(qū)間(0,)上單調遞減

          5.已知函數(shù)f(x)lg1x1x.若f(a)b.則f(a)()A.bB.bC.11bD.b

          6.函數(shù)f(x)logax1在(0,1)上遞減,那么f(x)在(1,)上()

          A.遞增且無最大值B.遞減且無最小值C.遞增且有最大值D.遞減且有最小值

          二、填空題1.若

          f(x)2x2xlga是奇函數(shù),則實數(shù)a=_________。

          2.函數(shù)

          f(x)log1x22x5的值域是__________.

          23.已知log147a,log145b,則用a,b表示log3528。4.設

          A1,y,lgxy,B0,x,y,且AB,則x;y。5.計算:

          322log325。

          ex16.函數(shù)y的值域是__________.

          xe1三、解答題

          1.比較下列各組數(shù)值的大。海1)1.7

          2.解方程:(1)9

          3.已知

          4.已知函數(shù)

          參考答案

          一、選擇題

          x3.3和0.82.1;(2)3.30.7和3.40.8;(3)

          3,log827,log9252231x27(2)6x4x9x

          y4x32x3,當其值域為[1,7]時,求x的取值范圍。

          f(x)loga(aax)(a1),求f(x)的定義域和值域;

          1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2

          3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即為偶函數(shù)

          x,x0時,u是x的減函數(shù),即ylgx在區(qū)間(,0)上單調遞減

          1x1xlgf(x).則f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的遞減區(qū)間,即a1,(1,)是u的遞增區(qū)間,即f(x)遞增且無最大值。

          二、填空題1.

          1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.

          2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,

          而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528

          ablog1435141log14log14(214)1log14271(1log147)2a

          log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴l(xiāng)g(xy)0,xy1

          51,∴x1,而x1,∴x1,且y1

          3215.

          5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答題1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1

          0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,

          3.333332log22log222log23,log332log333log35,223∴l(xiāng)og925log827.

          2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330

          3x90,3x32,

          x22x4x22x2x(2)()()1,()()10

          39332251()x0,則()x,332

          xlog23512

          3.解:由已知得14x32x37,

          xxxx43237(21)(24)0,得x即

          xxx43231(21)(22)0xx即021,或224∴x0,或1x2。

          xx4.解:aa0,aa,x1,即定義域為(,1);

          ax0,0aaxa,loga(aax)1,即值域為(,1)。

          擴展閱讀:高一數(shù)學上冊 第二章基本初等函數(shù)之對數(shù)函數(shù)知識點總結及練習題(含答案)

          〖2.2〗對數(shù)函數(shù)

          【2.2.1】對數(shù)與對數(shù)運算

         。1)對數(shù)的定義

         、偃鬭xN(a0,且a1),則x叫做以a為底N的對數(shù),記作xlogaN,其中a叫做底數(shù),

          N叫做真數(shù).

         、谪摂(shù)和零沒有對數(shù).③對數(shù)式與指數(shù)式的互化:xlogaNaxN(a0,a1,N0).

         。2)幾個重要的對數(shù)恒等式:loga10,logaa1,logaabb.

          N;自然對數(shù):lnN,即loge(3)常用對數(shù)與自然對數(shù):常用對數(shù):lgN,即log10…).e2.71828(4)對數(shù)的運算性質如果a0,a1,M①加法:logaN(其中

          0,N0,那么

          MlogaNloga(MN)

          M②減法:logaMlogaNlogaN③數(shù)乘:nlogaMlogaMn(nR)

         、

          alogaNN

          nlogaM(b0,nR)bn⑤logabM⑥換底公式:logaNlogbN(b0,且b1)

          logba【2.2.2】對數(shù)函數(shù)及其性質

         。5)對數(shù)函數(shù)函數(shù)名稱定義函數(shù)對數(shù)函數(shù)ylogax(a0且a1)叫做對數(shù)函數(shù)a1yx10a1yx1ylogaxylogax圖象O(1,0)O(1,0)xx定義域值域過定點奇偶性(0,)R圖象過定點(1,0),即當x1時,y0.非奇非偶單調性在(0,)上是增函數(shù)在(0,)上是減函數(shù)logax0(x1)函數(shù)值的變化情況logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a變化對圖象的影響在第一象限內,a越大圖象越靠低,越靠近x軸在第一象限內,a越小圖象越靠低,越靠近x軸在第四象限內,a越大圖象越靠高,越靠近y軸在第四象限內,a越小圖象越靠高,越靠近y軸(6)反函數(shù)的概念

          設函數(shù)果對于

          yf(x)的定義域為A,值域為C,從式子yf(x)中解出x,得式子x(y).如

          y在C中的任何一個值,通過式子x(y),x在A中都有唯一確定的值和它對應,那么式子

          x(y)表示x是y的函數(shù),函數(shù)x(y)叫做函數(shù)yf(x)的反函數(shù),記作xf1(y),習慣

          上改寫成

          yf1(x).

         。7)反函數(shù)的求法

         、俅_定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式③將xyf(x)中反解出xf1(y);

          f1(y)改寫成yf1(x),并注明反函數(shù)的定義域.

         。8)反函數(shù)的性質

         、僭瘮(shù)②函數(shù)

          yf(x)與反函數(shù)yf1(x)的圖象關于直線yx對稱.

          yf(x)的定義域、值域分別是其反函數(shù)yf1(x)的值域、定義域.

          yf(x)的圖象上,則P"(b,a)在反函數(shù)yf1(x)的圖象上.

          ③若P(a,b)在原函數(shù)④一般地,函數(shù)

          yf(x)要有反函數(shù)則它必須為單調函數(shù).

          一、選擇題:1.

          log89的值是log23A.

         。ǎ

          23B.1C.

          32D.2

          2.已知x=2+1,則log4(x3-x-6)等于

          A.

          ()C.0

          D.

          32B.

          54123.已知lg2=a,lg3=b,則

          lg12等于lg15()

          A.

          2ab

          1abB.

          a2b

          1abC.

          2ab

          1abD.

          a2b

          1ab4.已知2lg(x-2y)=lgx+lgy,則x的值為

          yA.1

          B.4

         。ǎ〤.1或4C.(C.ln5

          D.4或-1()

          5.函數(shù)y=log1(2x1)的定義域為

          2A.(

          1,+∞)B.[1,+∞)2B.5e

          1,1]2D.(-∞,1)()D.log5e()

          y6.已知f(ex)=x,則f(5)等于

          A.e5

          7.若f(x)logax(a0且a1),且f1(2)1,則f(x)的圖像是

          yyyABCD

          8.設集合A{x|x10},B{x|log2x0|},則AB等于

          A.{x|x1}C.{x|x1}

          B.{x|x0}D.{x|x1或x1}

          2OxOxOxOx()

          9.函數(shù)ylnx1,x(1,)的反函數(shù)為()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空題

        函數(shù)知識點總結11

          1.函數(shù)的定義

          函數(shù)是高考數(shù)學中的重點內容,學習函數(shù)需要首先掌握函數(shù)的各個知識點,然后運用函數(shù)的各種性質來解決具體的問題。

          設A、B是非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A-B為從集合A到集合B的一個函數(shù),記作y=f(x),xA

          2.函數(shù)的定義域

          函數(shù)的定義域分為自然定義域和實際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實際問題確定的,這時應根據自變量的實際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。

          3.求解析式

          求函數(shù)的.解析式一般有三種種情況:

         。1)根據實際問題建立函數(shù)關系式,這種情況需引入合適的變量,根據數(shù)學的有關知識找出函數(shù)關系式。

          (2)有時體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。

          (3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數(shù)解析式的前提是,需要對各種函數(shù)的性質了解且熟悉。

          目前我們已經學習了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復合的一些相對較復雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。

        函數(shù)知識點總結12

          一次函數(shù)知識點總結基本概念

          1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。

          例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.

          2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。

          *判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應

          1-12

          例題:下列函數(shù)(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數(shù)的有()

          x(A)4個(B)3個(C)2個(D)1個

          3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。(x的取值范圍)一次函數(shù)

          1..自變量x和因變量y有如下關系:

          y=kx+b(k為任意不為零實數(shù),b為任意實數(shù))則此時稱y是x的一次函數(shù)。特別的,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為任意不為零實數(shù))

          定義域:自變量的取值范圍,自變量的取值應使函數(shù)有意義;要與實際有意義。

          2.當x=0時,b為函數(shù)在y軸上的截距。

          一次函數(shù)性質:

          1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

          2一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。3.函數(shù)不是數(shù),它是指某一變量過程中兩個變量之間的關系。

          特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

          這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系

          當平面直角坐標系中兩直線平行時,其函數(shù)解析式中K值(即一次項系數(shù))相等

          當平面直角坐標系中兩直線垂直時,其函數(shù)解析式中K值互為負倒數(shù)(即兩個K值的'乘積為-1)

          應用

          一次函數(shù)y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當kx2B.x10,且y1>y2。根據一次函數(shù)的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。

          判斷函數(shù)圖象的位置

          例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經過()A.第一象限B.第二象限

          C.第三象限D.第四象限

          解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k

          解析式:y=kx(k是常數(shù),k≠0)必過點:(0,0)、(1,k)

          走向:k>0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經過第一、三象限;k0,圖象經過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b

          若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.已知函數(shù)y=3x+1,當自變量增加m時,相應的函數(shù)值增加()A.3m+1B.3mC.mD.3m-1

          11、一次函數(shù)y=kx+b的圖象的畫法.

          根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖

          象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.

          b>0經過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經過第一、二、四象限經過第二、三、四象限經過第二、四象限k0時,向上平移;當b

          某個一次函數(shù)的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.

        函數(shù)知識點總結13

          高一數(shù)學第三章函數(shù)的應用知識點總結

          一、方程的根與函數(shù)的零點

          1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。

          2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)

          yf(x)的圖象與x軸交點的橫坐標。

          即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.

          3、函數(shù)零點的求法:

          1(代數(shù)法)求方程f(x)0的實數(shù)根;○

          2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象○

          聯(lián)系起來,并利用函數(shù)的性質找出零點.

          零點存在性定理:如果函數(shù)y=f(x)在區(qū)間〔a,b〕上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內有零點,即存在c(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。先判定函數(shù)單調性,然后證明是否有f(a)f(b)第三章函數(shù)的應用習題

          一、選擇題

          1.下列函數(shù)有2個零點的是()

          222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內的根的過程中得:f(1)0,f(1.5)0,

          f(1.25)0,則方程的根落在區(qū)間()

          A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

          3.若方程axxa0有兩個解,則實數(shù)a的取值范圍是A、(1,)B、(0,1)C、(0,)D、

          4.函數(shù)f(x)=lnx-2x的零點所在的大致區(qū)間是()A.(1,2)B.2,eC.e,3D.e,

          5.已知方程x3x10僅有一個正零點,則此零點所在的區(qū)間是()

          A.(3,4)B.(2,3)C.(1,2)D.(0,1)

          6.函數(shù)f(x)lnx2x6的零點落在區(qū)間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

          7.已知函數(shù)

          fx的圖象是不間斷的,并有如下的對應值表:x1234567fx8735548那么函數(shù)在區(qū)間(1,6)上的零點至少有()個A.5B.4C.3D.28.方程2x1x5的解所在的區(qū)間是A(0,1)B(1,2)C(2,3)D(3,4)

          9.方程4x35x60的根所在的區(qū)間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)

          10.已知f(x)2x22x,則在下列區(qū)間中,f(x)0有實數(shù)解的是()

         。

         。ǎ

         。ǎ

          ((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據表格中的數(shù)據,可以判定方程ex-x-2=0的一個根所在的區(qū)間為()

          xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

          x12x根的個數(shù)為()

          A、0B、1C、2D、3二、填空題

          13.下列函數(shù):1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個零點的函數(shù)的序號是。

          x214.若方程3x2的實根在區(qū)間m,n內,且m,nZ,nm1,

          x則mn.

          222f(x)(x1)(x2)(x2x3)的零點是15、函數(shù)(必須寫全所有的零點)。

          擴展閱讀:高中數(shù)學必修一第三章函數(shù)的應用知識點總結

          第三章函數(shù)的應用

          一、方程的根與函數(shù)的零點

          1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。

          2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)

          yf(x)的圖象與x軸交點的橫坐標。

          即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.

          3、函數(shù)零點的求法:

          1(代數(shù)法)求方程f(x)0的實數(shù)根;○

          2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象聯(lián)系起來,○

          并利用函數(shù)的性質找出零點.

          4、基本初等函數(shù)的零點:

         、僬壤瘮(shù)ykx(k0)僅有一個零點。

          k(k0)沒有零點。x③一次函數(shù)ykxb(k0)僅有一個零點。

          ②反比例函數(shù)y④二次函數(shù)yax2bxc(a0).

         。1)△>0,方程ax2bxc0(a0)有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.

         。2)△=0,方程ax2bxc0(a0)有兩相等實根,二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

         。3)△<0,方程ax2bxc0(a0)無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.

         、葜笖(shù)函數(shù)ya(a0,且a1)沒有零點。⑥對數(shù)函數(shù)ylogax(a0,且a1)僅有一個零點1.

         、邇绾瘮(shù)yx,當n0時,僅有一個零點0,當n0時,沒有零點。

          5、非基本初等函數(shù)(不可直接求出零點的較復雜的函數(shù)),函數(shù)先把fx轉化成,這另fx0,再把復雜的函數(shù)拆分成兩個我們常見的函數(shù)y1,y2(基本初等函數(shù))個函數(shù)圖像的交點個數(shù)就是函數(shù)fx零點的個數(shù)。

          6、選擇題判斷區(qū)間a,b上是否含有零點,只需滿足fafb0。Eg:試判斷方程xx2x10在區(qū)間[0,2]內是否有實數(shù)解?并說明理由。

          1

          42x7、確定零點在某區(qū)間a,b個數(shù)是唯一的條件是:①fx在區(qū)間上連續(xù),且fafb0②在區(qū)間a,b上單調。Eg:求函數(shù)f(x)2xlg(x1)2的零點個數(shù)。

          8、函數(shù)零點的性質:

          從“數(shù)”的角度看:即是使f(x)0的實數(shù);

          從“形”的角度看:即是函數(shù)f(x)的圖象與x軸交點的橫坐標;

          若函數(shù)f(x)的圖象在xx0處與x軸相切,則零點x0通常稱為不變號零點;若函數(shù)f(x)的圖象在xx0處與x軸相交,則零點x0通常稱為變號零點.

          Eg:一元二次方程根的分布討論

          一元二次方程根的分布的基本類型

          2axbxc0(a0)的兩實根為x1,x2,且x1x2.設一元二次方程

          k為常數(shù),則一元二次方程根的k分布(即x1,x2相對于k的'位置)或根在區(qū)間上的

          分布主要有以下基本類型:

          表一:(兩根與0的大小比較)

          分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結論0b02af000b02af00f00

          大致圖象(a0)得出的結論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結a論)

          af00表二:(兩根與k的大小比較)

          分布情況兩根都小于k即兩根都大于k即一個根小于k,一個大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結a論)a0)afk0分布情況大致圖象(得出的結論表三:(根在區(qū)間上的分布)

          兩根都在m,n內兩根有且僅有一根在m,n一根在m,n內,另一根在p,q內(有兩種情況,只畫了一種)內,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

          大致圖象(a0)得出的結論0fm0fn0bmn2a綜合結論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論

          fmfn0Eg:(1)關于x的方程x22(m3)x2m140有兩個實根,且一個大于1,一個小于1,求m的取值范圍?

         。2)關于x的方程x2(m3)x2m140有兩實根在[0,4]內,求m的取值范圍?

          2(3)關于x的方程mx2(m3)x2m140有兩個實根,且一個大于4,一個小于4,求m的取值范圍?

          9、二分法的定義

          對于在區(qū)間[a,b]上連續(xù)不斷,且滿足f(a)f(b)0的函數(shù)

          yf(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,

          使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法.

          10、給定精確度ε,用二分法求函數(shù)f(x)零點近似值的步驟:(1)確定區(qū)間[a,b],驗證f(a)f(b)0,給定精度;(2)求區(qū)間(a,b)的中點x1;(3)計算f(x1):

         、偃鬴(x1)=0,則x1就是函數(shù)的零點;

          ②若f(a)f(x1)14、根據散點圖設想比較接近的可能的函數(shù)模型:一次函數(shù)模型:f(x)kxb(k0);二次函數(shù)模型:g(x)ax2bxc(a0);冪函數(shù)模型:h(x)axb(a0);

          指數(shù)函數(shù)模型:l(x)abxc(a0,b>0,b1)

          利用待定系數(shù)法求出各解析式,并對各模型進行分析評價,選出合適的函數(shù)模型

        函數(shù)知識點總結14

          總體上必須清楚的:

          1)程序結構是三種:順序結構、選擇結構(分支結構)、循環(huán)結構。

          2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個main函數(shù)。

          3)計算機的數(shù)據在電腦中保存是以二進制的形式.數(shù)據存放的位置就是他的地址.

          4)bit是位是指為0或者1。 byte是指字節(jié),一個字節(jié)=八個位.

          概念?嫉降模

          1、編譯預處理不是C語言的一部分,不占運行時間,不要加分號。C語言編譯的程序稱為源程序,它以ASCII數(shù)值存放在文本文件中。

          2、define PI 3.1415926;這個寫法是錯誤的,一定不能出現(xiàn)分號。 -

          3、每個C語言程序中main函數(shù)是有且只有一個。

          4、在函數(shù)中不可以再定義函數(shù)。

          5、算法:可以沒有輸入,但是一定要有輸出。

          6、break可用于循環(huán)結構和switch語句。

          7、逗號運算符的級別最低,賦值的級別倒數(shù)第二。

          第一章C語言的基礎知識

          第一節(jié)、對C語言的基礎認識

          1、C語言編寫的程序稱為源程序,又稱為編譯單位。

          2、C語言書寫格式是自由的,每行可以寫多個語句,可以寫多行。

          3、一個C語言程序有且只有一個main函數(shù),是程序運行的起點。

          第二節(jié)、熟悉vc++

          1、VC是軟件,用來運行寫的C語言程序。

          2、每個C語言程序寫完后,都是先編譯,后鏈接,最后運行。(.c—.obj—.exe)這個過程中注意.c和.obj文件時無法運行的,只有.exe文件才可以運行。(?迹。

          第三節(jié)、標識符

          1、標識符(必考內容):

          合法的要求是由字母,數(shù)字,下劃線組成。有其它元素就錯了。

          并且第一個必須為字母或則是下劃線。第一個為數(shù)字就錯了

          2、標識符分為關鍵字、預定義標識符、用戶標識符。

          關鍵字:不可以作為用戶標識符號。main define scanf printf都不是關鍵字。迷惑你的地方If是可以做為用戶標識符。因為If中的第一個字母大寫了,所以不是關鍵字。

          預定義標識符:背誦define scanf printf include。記住預定義標識符可以做為用戶標識符。

          用戶標識符:基本上每年都考,詳細請見書上習題。

          第四節(jié):進制的轉換

          十進制轉換成二進制、八進制、十六進制。

          二進制、八進制、十六進制轉換成十進制。

          第五節(jié):整數(shù)與實數(shù)

          1)C語言只有八、十、十六進制,沒有二進制。但是運行時候,所有的進制都要轉換成二進制來進行處理。(考過兩次)

          a、C語言中的'八進制規(guī)定要以0開頭。018的數(shù)值是非法的,八進制是沒有8的,逢8進1。

          b、C語言中的十六進制規(guī)定要以0x開頭。

          2)小數(shù)的合法寫法:C語言小數(shù)點兩邊有一個是零的話,可以不用寫。

          1.0在C語言中可寫成1.

          0.1在C語言中可以寫成.1。

          3)實型數(shù)據的合法形式:

          a、2.333e-1就是合法的,且數(shù)據是2.333×10-1。

          b、考試口訣:e前e后必有數(shù),e后必為整數(shù)。請結合書上的例子。

          4)整型一般是4個字節(jié),字符型是1個字節(jié),雙精度一般是8個字節(jié):

          long int x;表示x是長整型。

          unsigned int x;表示x是無符號整型。

          第六、七節(jié):算術表達式和賦值表達式

          核心:表達式一定有數(shù)值!

          1、算術表達式:+,-,*,/,%

          考試一定要注意:“/”兩邊都是整型的話,結果就是一個整型。 3/2的結果就是1.

          “/”如果有一邊是小數(shù),那么結果就是小數(shù)。 3/2.0的結果就是0.5

          “%”符號請一定要注意是余數(shù),考試最容易算成了除號。)%符號兩邊要求是整數(shù)。不是整數(shù)就錯了。[注意!!!]

          2、賦值表達式:表達式數(shù)值是最左邊的數(shù)值,a=b=5;該表達式為5,常量不可以賦值。

          1、int x=y=10:錯啦,定義時,不可以連續(xù)賦值。

          2、int x,y;

          x=y=10;對滴,定義完成后,可以連續(xù)賦值。

          3、賦值的左邊只能是一個變量。

          4、int x=7.7;對滴,x就是7

          5、float y=7;對滴,x就是7.0

          3、復合的賦值表達式:

          int a=2;

          a*=2+3;運行完成后,a的值是12。

          一定要注意,首先要在2+3的上面打上括號。變成(2+3)再運算。

          4、自加表達式:

          自加、自減表達式:假設a=5,++a(是為6),a++(為5);

          運行的機理:++a是先把變量的數(shù)值加上1,然后把得到的數(shù)值放到變量a中,然后再用這個++a表達式的數(shù)值為6,而a++是先用該表達式的數(shù)值為5,然后再把a的數(shù)值加上1為6,

          再放到變量a中。進行了++a和a++后在下面的程序中再用到a的話都是變量a中的6了。

          考試口訣:++在前先加后用,++在后先用后加。

          5、逗號表達式:

          優(yōu)先級別最低。表達式的數(shù)值逗號最右邊的那個表達式的數(shù)值。

         。2,3,4)的表達式的數(shù)值就是4。

          z=(2,3,4)(整個是賦值表達式)這個時候z的值為4。(有點難度哦。

          z= 2,3,4(整個是逗號表達式)這個時候z的值為2。

          補充:

          1、空語句不可以隨意執(zhí)行,會導致邏輯錯誤。

          2、注釋是最近幾年考試的重點,注釋不是C語言,不占運行時間,沒有分號。不可以嵌套!

          3、強制類型轉換:

          一定是(int)a不是int(a),注意類型上一定有括號的。

          注意(int)(a+b)和(int)a+b的區(qū)別。前是把a+b轉型,后是把a轉型再加b。

          4、三種取整丟小數(shù)的情況:

         。、int a =1.6;

         。、(int)a;

         。场1/2;3/2;

          第八節(jié)、字符

          1)字符數(shù)據的合法形式::

          ‘1’是字符占一個字節(jié),”1”是字符串占兩個字節(jié)(含有一個結束符號)。

          ‘0’的ASCII數(shù)值表示為48,’a’的ASCII數(shù)值是97,’A’的ASCII數(shù)值是65。

          一般考試表示單個字符錯誤的形式:’65’ “1”

          字符是可以進行算術運算的,記住:‘0’-0=48

          大寫字母和小寫字母轉換的方法:‘A’+32=’a’相互之間一般是相差32。

          2)轉義字符:

          轉義字符分為一般轉義字符、八進制轉義字符、十六進制轉義字符。

          一般轉義字符:背誦/0、、 ’、 ”、 。

          八進制轉義字符:‘141’是合法的,前導的0是不能寫的。

          十六進制轉義字符:’x6d’才是合法的,前導的0不能寫,并且x是小寫。

          3、字符型和整數(shù)是近親:兩個具有很大的相似之處

          char a = 65 ;

          printf(“%c”, a);得到的輸出結果:a

          printf(“%d”, a);得到的輸出結果:65

          第九節(jié)、位運算

          1)位運算的考查:會有一到二題考試題目。

          總的處理方法:幾乎所有的位運算的題目都要按這個流程來處理(先把十進制變成二進制再變成十進制)。

          例1:char a = 6, b;

          b = a<<2;這種題目的計算是先要把a的十進制6化成二進制,再做位運算。

          例2:一定要記住,異或的位運算符號” ^ ”。0異或1得到1。

          0異或0得到0。兩個女的生不出來。

          考試記憶方法:一男(1)一女(0)才可以生個小孩(1)。

          例3:在沒有舍去數(shù)據的時候,<<左移一位表示乘以2;>>右移一位表示除以2。

        函數(shù)知識點總結15

          一、函數(shù)的概念與表示

          1、映射

          (1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

          注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的.方法。一對多不是映射,多對一是映射

          2、函數(shù)

          構成函數(shù)概念的三要素

          ①定義域②對應法則③值域

          兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同

          二、函數(shù)的解析式與定義域

          1、求函數(shù)定義域的主要依據:

          (1)分式的分母不為零;

          (2)偶次方根的被開方數(shù)不小于零,零取零次方沒有意義;

          (3)對數(shù)函數(shù)的真數(shù)必須大于零;

          (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

          三、函數(shù)的值域

          1求函數(shù)值域的方法

         、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復合函數(shù);

         、趽Q元法:利用換元法將函數(shù)轉化為二次函數(shù)求值域,適合根式內外皆為一次式;

         、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

          ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

         、輪握{性法:利用函數(shù)的單調性求值域;

          ⑥圖象法:二次函數(shù)必畫草圖求其值域;

         、呃脤μ柡瘮(shù)

          ⑧幾何意義法:由數(shù)形結合,轉化距離等求值域。主要是含絕對值函數(shù)

          四.函數(shù)的奇偶性

          1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

          如果對于任意∈A,都有,則稱y=f(x)為奇

          函數(shù)。

          2.性質:

         、賧=f(x)是偶函數(shù)y=f(x)的圖象關于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關于原點對稱,

          ②若函數(shù)f(x)的定義域關于原點對稱,則f(0)=0

          ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關于原點對稱]

          3.奇偶性的判斷

         、倏炊x域是否關于原點對稱②看f(x)與f(-x)的關系

          五、函數(shù)的單調性

          1、函數(shù)單調性的定義:

          2設是定義在M上的函數(shù),若f(x)與g(x)的單調性相反,則在M上是減函數(shù);若f(x)與g(x)的單調性相同,則在M上是增函數(shù)。

        【函數(shù)知識點總結】相關文章:

        函數(shù)知識點總結02-10

        函數(shù)知識點總結06-23

        函數(shù)知識點總結【熱門】08-21

        (精品)函數(shù)知識點總結08-22

        函數(shù)知識點總結(精)08-21

        函數(shù)知識點03-01

        [精選]函數(shù)知識點03-01

        初二函數(shù)知識點總結01-13

        初中數(shù)學函數(shù)知識點總結04-08

        (精選)函數(shù)知識點總結15篇08-23

        翁牛特旗| 阳高县| 东兴市| 邮箱| 英山县| 射洪县| 革吉县| 黔江区| 瑞丽市| 巴东县| 横峰县| 任丘市| 陆丰市| 喜德县| 涞水县| 玉林市| 瑞昌市| 阿荣旗| 名山县| 靖州| 肇庆市| 静安区| 兴仁县| 海宁市| 奉新县| 乐东| 合川市| 繁昌县| 资兴市| 金塔县| 长宁区| 和林格尔县| 南涧| 大化| 云南省| 玛曲县| 永安市| 日照市| 鄂尔多斯市| 雷波县| 上饶市|