高中數(shù)學《簡單線性規(guī)劃》說課稿
作為一位不辭辛勞的人民教師,總不可避免地需要編寫說課稿,編寫說課稿是提高業(yè)務素質的有效途徑。說課稿要怎么寫呢?以下是小編收集整理的高中數(shù)學《簡單線性規(guī)劃》說課稿,希望能夠幫助到大家。
高中數(shù)學《簡單線性規(guī)劃》說課稿1
一.說教材
1.本節(jié)課主要內容是線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標函數(shù)。應用線性規(guī)劃的圖解法解決一些實際問題。
2.地位作用:線性規(guī)劃是數(shù)學規(guī)劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經(jīng)濟管理等許多方面的實際問題。簡單的線性規(guī)劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內容的學習,使學生進一步了解數(shù)學在解決實際問題中的應用,以培養(yǎng)學生學習數(shù)學的興趣、應用數(shù)學的意識和解決實際問題的能力。
3.教學目標
(1)知識與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標函數(shù)。
了解并初步應用線性規(guī)劃的圖解法解決一些實際問題。
(2)過程與方法:提高學生數(shù)學地提出、分析和解決問題的能力,發(fā)展學生數(shù)學應用意識,力求對現(xiàn)實世界中蘊含的一些數(shù)學模式進行思考和作出判斷。
(3)情感、態(tài)度與價值觀:體會數(shù)形結合、等價轉化等數(shù)學思想,逐步認識數(shù)學的應用價值,提高學習數(shù)學的興趣,樹立學好數(shù)學的自信心。
4.重點與難點
重點:理解和用好圖解法
難點:如何用圖解法尋找線性規(guī)劃的最優(yōu)解。
二.說教學方法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
(1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。這能充分調動學生的主動性和積極性。
(2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學生對知識進行主動建構;有利于突出重點、解決難點;也有利于發(fā)揮學生的創(chuàng)造性。
(3)體現(xiàn)“等價轉化”、“數(shù)形結合”的思想方法。這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
三.說學法指導
教給學生方法比教給學生知識更重要,本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯(lián)想轉化、動手實驗、練習鞏固。
(1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。
(2)聯(lián)想轉化:學生通過分析、探索、得出解決問題的方法。
(3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。
(4)練習鞏固:讓學生知道數(shù)學重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。
四.說教學程序
1、導入課題: 由一個不等式組表示平面區(qū)域轉化為在此平面區(qū)域內一二元一次數(shù)的最值問題,造成學生認知沖突。
3、導學達標之一:創(chuàng)設情境、形成概念
通過引例的問題讓學生探索解決新問題的方法。
(設計意圖:利用已經(jīng)學過的知識逐步分析,學以致用,使學生經(jīng)歷數(shù)學知識的形成過程,從而提高學生數(shù)學的地提出、分析和解決問題的`能力。)
然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關概念:線性約束條件、目標函數(shù)、線性目標函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。
(設計意圖:引導學生觀察和分析問題,激發(fā)學生的探索欲望,從而培養(yǎng)學生的解決問題和總結歸納的能力。)
4.導學達標之二:針對問題、舉例講解、形成技能
例一:課本61頁例3
(創(chuàng)設意境:,練習是使學生明白數(shù)學來源于實際又運用于實際,同時使學生進初步應用線性規(guī)劃的圖解法解決一些實際問題。)
6.鞏固目標:
練習一:學生做課堂練習P64例4
(叫學生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優(yōu)解的一種求法。)
練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)
(設計意圖:通過實際問題,激發(fā)學生興趣,培養(yǎng)學生的數(shù)學應用意識,力求學生能夠對現(xiàn)實生活中蘊含的一些數(shù)學模式進行思考和作出判斷。)
7.歸納與小結:
小結本課的主要學習內容是什么?(由師生共同來完成本課小結)
(創(chuàng)設意境:讓學生參與小結,引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數(shù)學思維習慣)
8.布置作業(yè):
P64. 2
五.說板書設計
板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。
高中數(shù)學《簡單線性規(guī)劃》說課稿2
一、教材分析:
1、教材的地位與作用:
線性規(guī)劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節(jié)內容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數(shù)學在解決實際問題中的應用,體驗數(shù)形結合和轉化的思想方法,培養(yǎng)學生學習數(shù)學的興趣、應用數(shù)學的意識和解決實際問題的能力。
2、教學重點與難點:
重點:畫可行域;在可行域內,用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。
難點:在可行域內,用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。
二、目標分析:
在新課標讓學生經(jīng)歷"學數(shù)學、做數(shù)學、用數(shù)學"的理念指導下,本節(jié)課的教學目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數(shù)、可行解、可行
域和最優(yōu)解等概念;
2、理解線性規(guī)劃問題的圖解法;
3、會利用圖解法求線性目標函數(shù)的最優(yōu)解.
能力目標:
1、在應用圖解法解題的過程中培養(yǎng)學生的觀察能力、理解能力。
2、在變式訓練的過程中,培養(yǎng)學生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學生運用數(shù)形結合思想解題的能力和化歸能力。
情感目標:
1、讓學生體驗數(shù)學來源于生活,服務于生活,體驗數(shù)學在建設節(jié)約型社會中的作用,品嘗學習數(shù)學的樂趣。
2、讓學生體驗數(shù)學活動充滿著探索與創(chuàng)造,培養(yǎng)學生勤于思考、勇于探索的精神;
3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。
三、過程分析:
數(shù)學教學是數(shù)學活動的教學。因此,我將整個教學過程分為以下六個教學環(huán)節(jié):1、創(chuàng)設情境,提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問題;6、歸納總結,鞏固提高。
1、創(chuàng)設情境,提出問題:
在課堂教學的開始,我以一組生動的動畫(配圖片)描述出在神奇的數(shù)學王國里,有一種算法廣泛應用于工農(nóng)業(yè)、軍事、交通運輸、決策管理與規(guī)劃等領域,應用它已節(jié)約了億萬財富,還被列為20世紀對科學發(fā)展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學生的求知欲,引領學生進入學習情境。
接著我設置了一個具體的"問題"情境,即世界杯冠軍意大利足球隊(插圖片)營養(yǎng)師布拉加經(jīng)常遇到的這樣一類營養(yǎng)調配問題:
甲、乙、丙三種食物的維生素A、B的含量及成本如下表:
甲
乙
丙
維生素A(單位/千克)
400
600
400
維生素B(單位/千克)
800
200
400
成本(元/千克)
7
6
5
布拉加想購這三種食物共10千克,使之所含維生素A不少于4400單位,維生素B不少于4800單位,問三種食物各購多少時成本最低,最低成本是多少?
同學們,你能為布拉加解決這個棘手的問題嗎?
首先將此實際問題轉化為數(shù)學問題。我請學生完成這一過程如下:
解:設所購甲、乙兩種食物分別為x、y千克,則丙食物為10-x-y千克.
由題意可知x、y應滿足條件:
即①
又設成本為z元,則z=7x+6y+5(10-x-y)=2x+y+50.
于是問題轉化為:當x、y滿足條件
、,求成本z=2xy50的最小值問題。
【設計意圖】數(shù)學是現(xiàn)實世界的反映。通過學生關注的熱點問題引入,激發(fā)學生的興趣,引發(fā)學生的思考,培養(yǎng)學生從實際問題抽象出數(shù)學模型的能力。
2、分析問題,形成概念
那么如何解決這個求最值的問題呢?這是本次課的難點。我讓學生先自主探究,再分組討論交流,在學生遇到困難時,我運用化歸和數(shù)形結合的思想引導學生轉化問題,突破難點:⑴學生基于上一課時的學習,討論后一般都能意識到要將不等式組①表示成平面區(qū)域。(教師動畫演示畫不等式組①表示的平面區(qū)域。)于是問題轉化為當點(x,y)在此平面區(qū)域內運動時,如何求z=2xy50的最小值的問題。⑵由于此問題難度較大,我試著這樣引導學生:由于已將x,y所滿足的條件幾何化了,你能否也給式子z=2xy50作某種幾何解釋呢?學生很自然地想到要將等式z=2xy50視為關于x,y的一次方程,它在幾何上表示直線。當z取不同的值時可得到一族平行直線。于是問題又轉化為當這族直線與此平面區(qū)域有公共點時,如何求z的最小值。⑶這一問題相對于部分學生來說仍有一定的難度,于是我繼續(xù)引導學生:如何更好地把握直線2xy50=z的幾何特征呢?學生討論交流后得出要將其改寫成斜截式y(tǒng)=-2xz-50。至此,學生恍然大悟:原來z-50就是直線在y軸上的截距,當截距z-50最小時z也最小。于是問題又轉化為當直線y=-2xz-50與平面區(qū)域有公共點時,在區(qū)域內找一個點P,使直線經(jīng)過點P時在y軸上的截距最小。
。ňo接著我讓學生動手實踐,用作圖法找到點P(3,2),求出z的最小值為58,即最低成本為58元。)
【設計意圖】數(shù)學教學的核心是學生的再創(chuàng)造。讓學生自主探究,體驗數(shù)學知識的發(fā)生、發(fā)展的過程,體驗轉化和數(shù)形結合的思想方法,從而使學生更好地理解數(shù)學概念和方法,突出了重點,化解了難點。
就在學生趣味盎然之際,我就此給出相關概念:
不等式組①是一組對變量x、y的約束條件,這組約束條件都是關于x、y的一次不等式,所以又稱為線性約束條件。z=2xy50是欲達到最大值或最小值所涉及的變量x、y的解析式,叫做目標函數(shù)。由于z=2xy50又是x、y的一次解析式,所以又叫做線性目標函數(shù)。
一般的,求線性目標函數(shù)在線性約束條件下的最大值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題。滿足線性約束條件的解(x,y)叫做可行解,由所有可行解組成的集合叫做可行域。其中使目標函數(shù)取得最大值或最小值的可行解都叫做這個問題的最優(yōu)解。象上述求解線性規(guī)劃問題的方法叫圖解法。
由前面實際問題的解決自然地過渡到新概念的講解,使得知識的銜接較為順暢,概念的形成水到渠成。
3、反思過程,提煉方法
解題回顧是解題過程中重要又常被學生忽略的一個環(huán)節(jié)。我借用多媒體輔助教學,動態(tài)演示解題過程,引導學生歸納、提煉求解步驟:
。1)畫可行域--畫出線性約束條件所確定的平面區(qū)域;
。2)過原點作目標函數(shù)直線的平行直線l0;
(3)平移直線l0,觀察確定可行域內最優(yōu)解的位置;
。4)求最值--解有關方程組求出最優(yōu)解,將最優(yōu)解代入目標函數(shù)求最值。
簡記為畫--作--移--求四步。
4、變式演練,深入探究
為了讓學生更好地理解圖解法求線性規(guī)劃問題的內在規(guī)律,我在例1的基礎上設計了例2和兩個變式:
例2.設z=2x-3y,式中變量x、y滿足下列條件,求z的最大值和最小值。
【設計意圖】進一步強調目標函數(shù)直線的縱截距與z的最值之間的關系,有時并不是截距越大,z值越大。
變式1.設z=axy,式中變量x、y滿足下列條件,若目標函數(shù)z僅在點(5,2)處取到最大值,求a的取值范圍。
變式2.設z=axy,式中變量x、y滿足下列條件,若使目標函數(shù)z取得最大值的最優(yōu)解有無數(shù)個,求a的值。
【設計意圖】用已知有唯一(或無數(shù))最優(yōu)解時反過來確定目標函數(shù)某些字母系數(shù)的取值范圍來訓練學生從各個不同的側面去理解圖解法求最優(yōu)解的實質,培養(yǎng)學生思維的發(fā)散性。
。ㄒ陨蟽蓚變式均讓學生用幾何畫板進行實驗,探求解決方法。并引導學生總結出:最優(yōu)解一定位于多邊形可行域的頂點或邊界直線處。)
5、運用新知,解決問題
"學數(shù)學而不練,猶如入寶山而空返"。為了及時鞏固知識,反饋教學信息,我安排了如下練習:
練習1:教材p64練習第1題
【設計意圖】及時檢驗學生利用圖解法解線性規(guī)劃問題的情況。
練習2:設z=2xy,式中變量x、y滿足下
列條件①,求z的最大值和最小值。
。▽W生獨立完成鞏固性練習,老師投影有代表性的學生解答過程,給予積極性的評價,并強調注意點。同座同學間相互交流、批改和更正。)
【設計意圖】除了幫助學生鞏固新學的知識,還能引導學生運用新知識,迅速清楚地發(fā)現(xiàn)以前用解不等式的知識錯解此類題的原因。讓學生再一次深刻體會到數(shù)形結合的妙處,同時又鞏固了舊知識,完善了知識結構體系。
6、歸納總結,鞏固提高
。1)歸納總結
為使學生對所學的知識有一個完整而深刻的印象,我請學生從以下兩方面自己小結。
。1)這節(jié)課學習了哪些知識?
。2)學到了哪些思考問題的方法?
。▽W生回答)
【設計意圖】有利于學生養(yǎng)成及時總結的良好習慣,并將所學知識納入已有的認知結構,同時也培養(yǎng)了學生數(shù)學交流和表達的能力。
。2)鞏固提高
布置作業(yè):
1.閱讀本節(jié)內容,完成課本P65習題7.4第2題
2.思考題:設z=2x-y,式中變量x、y滿足下列條件
且變量x、y為整數(shù),求z的最大值和最小值。
【設計意圖】讓學生鞏固所學內容并進行自我檢測與評價,并為下一課時解決實際問題中的最優(yōu)解是整數(shù)解的教學埋下伏筆。
四、教法分析:
鑒于我校高二學生已具有較好的數(shù)學基礎知識和較強的分析問題、解決問題的能力,本節(jié)課我以學生為中心,以問題為載體,采用啟發(fā)、引導、探索相結合的教學方法。
。1)設置"問題"情境,激發(fā)學生解決問題的欲望;
。2)提供"觀察、探索、交流"的機會,引導學生獨立思考,有效地調動學生思維,使學生在開放的活動中獲取知識。
(3)利用多媒體輔助教學,直觀生動地呈現(xiàn)圖解法求最優(yōu)解的過程,既加大課堂信息量,又提高了教學效率。
(4)指導學生做到"四會":會疑;會議;會思;會變。在教學過程中,重視學生的探索經(jīng)歷和發(fā)現(xiàn)新知的體驗,使學生形成自己對數(shù)學知識的理解和有效的學習策略。
五、評價分析
本節(jié)課我的設計理念遵循以下四條原則:以問題為載體;以學生為主體;以合作交流為手段;以能力提高為目的。重視概念的提取過程;知識的形成過程;解題的探索過程;情感的體驗過程。學生通過自主探究、合作交流,體會合作學習的默契和諧,體會冥思苦想后的豁然開朗,體會邏輯思維的嚴謹美,體會一題多變的變幻美,體會數(shù)形結合的奇異美。
【高中數(shù)學《簡單線性規(guī)劃》說課稿】相關文章:
簡單的線性規(guī)劃02-28
簡單的線性規(guī)劃教案10-11
簡單線性規(guī)劃課件04-05
《簡單的線性規(guī)劃》教學設計范文04-11
《簡單線性規(guī)劃問題》教學反思06-17
最新簡單的線性規(guī)劃教學設計范文04-11
高中數(shù)學《簡單隨機抽樣》說課稿03-25
簡單的線性規(guī)劃問題教學反思三篇11-04
簡單的線性規(guī)劃問題檢測試題08-14